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tance Y,(x) of the line are small, as is often the case at low frequencies.
Also in this case we have to solve a Riccati equation, and the solution
is given by (3) if the exponential term is omitted and the symbols are
exchanged according to the scheme

I'(x) — Y(x)
() — Y(0)
f1(%) — Zi(x)
fa(w) = Yp(x). )]

The solution for ¥ (x) has turned out to be particularly useful, for
example in calculations of the propagation of plane waves in lossy,
stratified media at low frequencies.

IV. A NUMERICAL EXAMPLE

In order to give an idea of the usefulness of (3) in a practical case,
the magnitude of the reflection coefficient I'(x) of a matched expo-
nential line has been computed for two different impedance ratios.
This particular line has been chosen since it is also possible to derive
an exact expression for its reflection coefficient which can be com-
pared with (3). The characteristic admittance of the exponential line
is supposed to vary as Y.(x) = Y,-exp (28x), while its propagation
factor is v =78,. The two values of §L that have been used for §x
(8 is a constant and L is the length of the line) are 6L =0.55 and
8L =2, corresponding to impedance ratios of 3:1 and 54:1, respec-
tively. (Since this is only an illustrative example, no attention is payed
here to the physical realizability of such lines.) The highest order term
used is K. At the lowest values of 8oL, the equation for ¥ (x) has been
used instead of (3) to obtain better convergence.
¥ The results, which are shown in Figs. 2 and 3, are rather striking.
The curves one gets with the method presented here (solid curves)
coincide within drawing accuracy with the exact ones for all values of
BoL at both impedance ratios. The curves obtained when the problem
is solved in the conventional way {(dotted curves), on the other hand,
show serious disagreement particularly for the high impedance ratio
and at low values of 8oL,
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V. CoNcLusioN

In this short paper equations are presented for the electrical
properties of a nonuniform line. They are given in series form and are
valid also for lossy lines connected to arbitrary loads. The equations
may be applied to all kinds of single-mode transmission lines; for
instance, coaxial lines, strip lines, and waveguides. As a consequence
they can be utilized in the design of many microwave components
containing nonuniform line sections, like resonators, filters, tapered
transitions, etc. In cases where one has the choice, nonuniform line
sections often have advantages over uniform ones. The usefulness of
the equations derived here is, however, not limited to transmission
lines only. Due to the analogy between the free propagation of plane
waves in a medium and waves on transmission lines, the results may
also be used in the design of certain types of absorbing materials or in
the study of propagation of plane waves in a stratified atmosphere,
to take only two examples.

The well-known fact that the Riccati equation can be transformed
by a simple mathematical operation into a one-dimensional wave
equation indicates that the equations may be applied in other
fields of physics as well. Thus, for example, it may well be expected
that the solution described in this short paper could be used with
benefit in such fields as acoustics, optics, and quantum mechanics.
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The Lowest Order Mode and the Quasi-TEM Mode
in a Ferrite-Filled Coaxial Line or Resonator

INGO WOLFF

Abstract—The field distribution of the mode in a ferrite-filled
coaxial cavity, which converges towards the TEM mode in the iso-
tropic case, is discussed.

During the last few years there has been a discussion between
M. M. Weiner and M. E. Brodwin and D. A, Miller about the “lowest
order mode” and an approximate theory for this mode, called the
quasi-TEM mode, in a ferrite-filled coaxial line [1]-[3]. The author
has studied the behavior of all modes in a ferrite-filled coaxial cavity
[4], [5] and would like to give some detailed results for the “lowest
order mode” and the correct conditions for approximating it by the
Suhl and Walker approximation [7] of a quasi-TEM mode-.

Basically, there are three different kinds of modes in a ferrite-
filled cavity.

Manuscript received September 13, 1971; revised January 7, 1972.
The author is with the Institut fur Hochfrequenztechnik, Technische Hochschule
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Fig. 1. The dependence of the field components on the radial coordinate for the
limit-TEM mode in a ferrite-filled coaxial cavity. Material R5, 7, =1.0 cm,
7i=0.5¢cm, ! =0.5 ecm, Ho=4 kA /cm.

1) The TM mode, which is independent of the longitudinal coor-
dinate (z axis).

2) The HE or EH modes, which converge towards the TE or
TM modes in the isotropic limit. The isotropic limit is given in the
case of very high magnetic bias field (Ho— «) or vanishing magnetic
bias field [4], [5].

3) There is a third mode which converges towards the TEM
mode in the isotropic limit: The so-called “lowest order mode.”

It is not proper to call it the “lowest order mode,” because in a
coaxial cavity the lowest order mode may be the mode which con-
verges towards the TEM mode (for Hoy— «) or the z-independent
TM mode depending upon the dimensions chosen. We, therefore,
would prefer to call the mode, which converges towards the TEM
mode, the “limit-TEM mode.”

This mode must satisfy the following conditions.

1) The field distribution of the limit-TEM mode must be inde-
pendent of the azimuthal angle.

2) The eigenvalues of the differential equations

AgE; + 81,22Ez =0
AH + 51,5°H, =0

must converge towards zero in the isotropic limit. They also become
zero if the frequency approaches zero.

3) The field of the limit-TEM mode has all six field components,
in particular the E, and H, components.

4) The E, and H, components as well as the E4 and H, compo-
nents must vanish in the isotropic limit.

As calculations on a digital computer show, there exist solutions
which satisfy the above mentioned conditions. For these particular
solutions the eigenvalue s,® is positive, and s:® is negative for all
values of magnetic bias field. For infinite magnetic bias field both
eigenvalues converge towards zero. Fig. 1 shows the dependence of
the field components on the radial coordinate. It may be seen that
for a bias field (H,=4 kA /cm) above gyromagnetic resonance and for
the dimensions chosen (;=0.5 cm, 7,=1.0 cm, /=0.5 cm, where ]
is the length of the cavity) the E4 and E, components are small com-
pared to the E, component, and the H, and H, components are small
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Fig. 2. The dependence of the field components on the radial coordinate for the
limit-TEM mode in a ferrite-filled coaxial cavity. Material R5, 7, =1.0 cm,
7§ =0.95 c¢m, I =0.5 cm, Ho =4 kA /cm.

compared to the H, component. The E, and H, components approxi-
mately decrease as 1/r. The E, component is also small compared to
the E; component, but the magnitude of the H, component is ap-
proximately that of the H, component. In case of magnetic bias
fields below gyromagnetic resonance, the E. component is no longer
large compared to that of the E4 component, but both components
are much larger than the E, component [6]. Below gyromagnetic
resonance the Hy component is still large compared to the A, and H,
component. Field distributions of the elliptically polarized fields are
given in [4]-[6] by the author.

In their communication M. E. Brodwin and D. A. Miller [2]
stated that the conditions for approximating the “lowest order
mode” by the Suhl and Walker approximation of a quasi-TEM mode
are

|51I (re — 1) K1
| 52] (ra — i) K L.

In contradiction Weiner [1], [3] said that this condition is not suffi-
cient and that the necessary and sufficient conditions should be

| s1]7e <1
|s11n<<1
52| ra 1
| 52| 7 & 1.

In order to prove the conditions, resonators with small and large
differences between the inner and outer radii were calculated. Fig.
2 shows the field distribution for a bias field of Hy=4 kA /cm and the
dimensions 7; =0.95 cm, 7, =1.0 cm, /=0.5 cm. As may be seen from
Fig. 2, the E; and the E, components are small compared to the E,
component. The magnetic-field strength has an H, component and
an H, component. The H, component is very small. Therefore, the
field distribution may be approximated by a quasi-TEM mode.
However, the quantities [sm, and |sor,| are greater than 1.0 in the
case considered here (si7a=2.28, s37,=32.15) so that the conditions
given by Weiner [1], [3], which should be satisfied when using the
quasi-TEM mode instead of the limit-TEM mode, are not satisfied.
If a magnetic bias field of 8 kA /cm and the resonator with the dimen-
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Fig. 3. The dependence of the field components on the radial coordinate for the
limit-TEM mode in a ferrite-filled coaxial cavity. Material RS, 7, =1.0 cm,
7;=0.95 cm, ! =0.5 cm, Ho=8 kA /em.

TABLE 1

DIFFERENCES BETWEEN THE NUMERICALLY CALCULATED
RESONANCE FREQUENCIES OF A FERRITE-FILLED COAXIAL
Cavity FOR THE LiviT-TEM Mobg aAND Quasi-TEM
MobpE as A FUNCTION OF THE RESONATOR DIMENSIONS

0 Differ-

e Yo A/ ence

(em) (cm) (cm) cm) S1¥a Sa¥q Heff (%)
0.1 1.0 0.5 4.0 2.056 3;2.309 1.326 1.240
0.5 1.0 0.5 4.0 2.178 ;2.226 1.327 0.595
0.9 1.0 0.5 4.0 2.280 j2.151 1.328 0.029
0.93 1.0 0.5 4.0 2.283 ;2.149 1.328 0.017
0.95 1.0 0.5 4.0 2.284 42.148 1.328 0.011
0.98 1.0 0.5 4.0 2.285 j2.148 1.328 0.006
0.1 1.0 0.5 0.4 3.125 75.047 0.746 18.210
0.5 1.0 0.5 0.4 3.872 j4.460 0.779 8.520
0.9 1.0 0.5 0.4 4,546 33.731 0.807 0.275
0.93 1.0 0.5 0.4 4.559 ;3.713 0.807 0.151
0.95 1.0 0.5 0.4 4.566 33.710 0.807 0.093
0.98 1.0 0.5 0.4 4.57t 73.698 0.807 0.040

sions given above is used, the field distribution in the first approxima-
tion becomes the field of a TEM mode in a coaxial resonator, Fig. 3.
The E, and the Hy components are at least twenty times larger than
the other field components. In this case s17, =1.156 and s.7, =j1.41.
For Hy=4 kA /cm, the difference between the propagation constant
(or the resonance frequency) calculated from the exact determinant
and that calculated from the Suhl and Walker approximation of the
quasi-TEM mode is small (see Table I). This difference becomes
smaller if the difference between the inner and the outer radii gets
smaller. This is still true for smaller magnetic bias field (see Table I,
Hy=400 A/cm). It means that the conditions given by Weiner [1],
[3] are by no means the most general ones.
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Weiner [3] has mentioned, that for a small difference between the
inner and outer radii the determinantal equation is identical zero.
This is absolutely wrong. In its correct form this sentence should be:
If the difference between the inner and the outer radii of the ferrite-
filled coaxial line is small

|'si] o — r) <1
1521 (ra — ) K1

which means
|S1|1’a= IS1|1’;+6

|'sa|ra=|se|7e+e

with eX1 and the Bessel functions are approximated by [8]
Jo(] smri| + & = Jo(| s ) — e]1(| sl,gn[ )

No(| sl,znl +¢e) ~ No(l sl,an ) — ﬁNl([ 51,271| )
Io(| suam| + ¢ = To(] s1,97] ) + elo(] sno7])

Ko([ sl,ml +¢ = Ko(! sl,ml ) — er(] S1,9%2

)

the determinantal equation vanishes to a first approximation. It
means, the value of the determinantal equation is small, but by no
means zero. It further means that a second-order approximation has
to be done to find that propagation constant, for which the deter-
minantal equation changes its sign, thereby well defining the zero of
the determinant. Weiner seems not to have done this. If it is done,
it can be shown that the determinantal equation only vanishes
exactly, if

8 = wV/ ewEriteis.

Therefore, the conditions given by Weiner are by no means correct
and the conditions given by Brodwin and Miller [2] are sufficient
conditions. Mueller and Rosenbaum repeat the conditions given by
Weiner [9]. Lewin [10] states that there can exist a large difference
between the exact solution and the quasi-TEM solution, but he only
gives an example with 7,/7:=1.5, which does not satisfy the above-
given conditions and, therefore, is in no contradiction to the conclu-
sions made here.

Summarizing, the conditions given by Weiner are not correct, and
the conditions given by Brodwin and Miller are sufficient conditions
for approximating the limit-TEM mode by the Suhl and Walker ap-
proximation.
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