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Fig.2. [r]versus j30Latan impedance ratio of3:l.

0123 <56 7 /8#L

Fig.3. [r]versus (30Latan impedance ratio of54:l.

tance Yp(x)ofthe line~es mall, asisoftent hecaseatl owfrequencies.

Also in this case we have to solve a Rlccati equation, and the solution

is given by (3) if the exponential term is omitted and the symbols are

exchanged according to the scheme

!

r(z) + Y(2)

r(o) + Y(o)

j,(~) + z.(x)

f,(z) + Y.(x). (7)

The solution for Y(x) has turned out to be particularly useful, for

example in calculations of the propagation of plane waves in lossy,

stratified media at low frequencies.

IV. A NUMERICAL EXAMPLE

In order to give an idea of the usefulness of (3) in a practical case,

the magnitude of the reflection coefficient r(x) of a matched expo-
nential line has been computed for two different impedance ratios.

This particular line has been chosen since it is also possible to derive

an exact expression for its reflection coefficient which can be com-

pared with (3). The characteristic admittance of the exponential line

is supposed to vary as Y.(x) = YO. exp (28x), while its propagation

factor is ~ =jp,. The two values of W that have been used for &x

(8 is a constant and L is the length of the line) are 6-L= 0.55 and

c$L= 2, corresponding to impedance ratios of 3:1 and 54:1, respec-
tively. (Since this is only an illustrative example, no attention is payed

here to the physical realizability of such lines.) The highest order term

used is &,. At the lowest values of /JiIL, the equation for Y(x) has been

used instead of (3) to obtain better convergence.

k The results, which are shown in Figs. 2 and 3, are rather striking.

The curves one gets with the method presented here (solid curves)

coincide within drawing accuracy with the exact ones for all values of

80L at both impedance ratios. The curves obtained when the problem

is solved in the conventional way (dotted curves), on the other hand,

show serious disagreement particularly for the high impedance ratio

and at low values of &IL.

V. CONCLUSION

In this short paper equations are presented for the electrical

properties of a nonuniform line. They are given in series form and are

valid also for 10SSY lines connected to arbitrary loads. The equations

may be applied to all kinds of single-mode transmission lines; for

instance, coaxial lines, strip lines, and waveguides. As a consequence

they can be utilized in the design of many microwave components

containing nonuniform line sections, like resonators, filters, tapered

transitions, etc. In cases where one has the choice, nonuniform line

sections often have advantages over uniform ones. The usefulness of

the eauations derived here is, however, not limited to transmission

lines only. Due to the analogy between the free propagation of plane

waves in a medium and waves on transmission lines, the results may

also be used in the design of certain types of absorbing materials or in

the study of propagation of plane waves in a stratified atmosphere,

to take only two examples.

The well-known fact that the Rlccati eauation can be transformed

by a simple mathematical operation int~ a one-dimensional wave

equation indicates that the equations may be applied in other

fields of physics as well. Thus, for example, it may well be expected

that the solution described in this short paper could be used with

benefit in such fields as acoustics, optics, and quantum mechanics.
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The Lowest Order Mode and the Quasi-TEM Mode

in a Ferrite-Filled Coaxial Line or Resonator

INGO WOLFF

.4b.sfracf-The field distribution of the mode in a ferrite-filled

coaxial cavity, which converges towards the TEM mode in the iso-

tropic case, is dkcussed.

During the last few years there has been a discussion between

M. M. Weiner and M. E. Brodwin and D. A. Miller about the “lowest

order mode” and an approximate theory for this mode, called the

quasi-TEM mode, in a ferrite-filled coaxial line [1 ]– [3 ]. The author

has studied the behavior of all modes in a ferrite-filled coaxial cavity

[4], [5] and would like to give some detailed results for the “lowest

order mode” and the correct conditions for approximating it by the

Suhl and Walker approximation 17] of a quasi-TEM mode.

Basically, there are three different kinds of modes in a ferrite-

filled cavity.

Manuscript received September 13, 1971; revised January 7, 1972.
The author is with the Institut f ur Hochfrequenztechnik, Technische Hochschule
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Fig. 1. The dependence of the field components on the radial coordinate for the
limit-TEM mode in a ferrite-filled coaxial cavity. Material R5, r. = 1.0 cm,
t’i ‘0.5 cm, 1 =0. S cm, H, =4 kA/wI.

1) The TM mode, which is independent of the longitudinal coor-

dinate (z axis).

2) The HE or EH modes, which converge towards the TE or

TM modes in the isotropic limit. The isotropic limit is given in the

case of very high magnetic bias field (HO+ ~ ) or vanishing magnetic

bias field [4], [5].

3) There is a third mode which converges towards the TEM

mode in the isotropic limit: The so-called ‘(lowest order mode. ”

It is not proper to call it the “lowest order mode, ” because in a

coaxial cavity the lowest order mode may be the mode which con-

verges towards the TEM mode (for Ho+ cc) or the z-independent

TM mode depending upon the dimensions chosen. We, therefore,

would prefer to call the mode, which converges towards the TEM

mode, the “limit-TEM mode. ”

This mode must satisfy the following conditions.

1) The field distribution of the limit-TEM mode must be inde-

pendent of the azimuthal angle.

2) The eigenvalues of the differential equations

&?z+s1,92& =0

AtH, +SI,Z2H, =0

must converge towards zero in the isotropic limit. They also become

zero if the frequency approaches zero.

3) The field of thelimit-TEM mode hasallsix field components,

in particular the E= and H. components.

4) The E.and H, components as well as the E~and H,compo-

nents must vanish in the isotropic limit.

As calculations on a digital computer show, there exist solutions

which satisfy the above mentioned conditions. For these particular

solutions the eigenvalue Slz is positive, and SZ2 is negative for all

values of magnetic bias field. For infinite magnetic bias field both

eigenvalues converge towards zero. Fig, 1 shows the dependence of

the field components on the radial coordinate. It may be seen that

for a bias field (HO =4 kA/cm) above gyromagnetic resonance and for

the dimensions chosen (YL= 0.5 cm, r== 1.0 cm, 1=0.5 cm, where 1

is the length of the cavity) the E+ and Es components are small com-

pared to the E, component, and the H, and H. components are small
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Fig. 2. The dependence of the field components on the radial coordinate for
limit-TEM mode in a ferrite-filled coaxizl cavity. Material R5, ?a = 1.0
Ti =0.95 cm, 1 =0.5 cm, HO =4 kA/=m.

the
cm,

compared to the HO component. The E, and H+ components approxi-

mately decrease as 1/r. The EZ component is also small compared to

the E+ component, but the magnitude of the Hz component is ap-

proximately that of the H, component. In case of magnetic bias

fields below gyromagnetic resonance, the E, component is no longer

large compared to that of the E+ component, but both components

are much larger than the Ez component [6]. Below gyro magnetic

resonance the H@component is still large compared to the H, and H,

component. Field distributions of the elliptically polarized fields are

given in [4]– [6 ] by the author.

In their communication M. E. Brodwin and D. A. Miller [2]

stated that the conditions for approximating the “lowest order

mode” by the Suhl and Walker approximation of a quasi-TEM mode

are

In contradiction Weiner [1], [3] said that this condition is not suffi-

cient and that the necessary and sufficient conditions should be

]S, [ra<<l

l.Y, \fi<<l

!Sz]r’a <<l

IS, IY, <<l.

In order to prove the conditions, resonators with small and large

differences between the inner and outer radii were calculated. Fig.

2 shows the field distribution for a bias field of Ho = 4 kA/cm and the

dimensions ri = 0.95 cm, TO= 1.0 cm, 1= 0.5 cm. As may be seen from

Fig. 2, the E@and the E, components are small compared to the E,

component. The magnetic-field strength has an Ho component and

an H, component. The H. component is very small. Therefore, the

field distribution may be approximated by a quasi-TEM mode.

However, the quantities ~sir= [ and ] szr~ I are greater than 1.0 in the

case considered here (s~r. =2.28, S2YC= ji?. 15) so that the conditions

given by Weiner [1], [3], which should be satisfied when using the

quasi-TEM mode instead of the limit-TEM mode, are not satisfied.

If a magnetic bias field of 8 kA/cm and the resonator with the dimen-
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Fig. 3. The dependence of the field cmnponentson the radial coordinate for the
limk-TEM mode in a ferrite-filled coaxial cav~ty. Material R5, v.=1.O cm,
?’i‘0.9.5 cm, 1=0.5 cm, Ho =8 kA/CIII.

TABLE I

DIFFERENCES BETWEEN THE NUMERICALLY CALCULATED

RESONANCE FREQUENCIES OF A FERRITE-FILLED COAXIAL

CAVITY FOR THE LIMIT-TEM MODE AND QuAsI-TEM

MODE AS A FUNCTION OF THE RESONATOR DIMENSIONS

H, Differ-

(C7A) (c’:) (CL) $4/
ence

SI?’a SZr. kfi (%)

0.1
0.5
0.9
0.93
0.95
0.98

0,1

::;
0.93
0.95
0.98

1.0 0.5 4.0 2.056 j2 .309
1.0 0.5 4.0 2.178 j2.226
1.0 0.5 4.0 2.280 j2.151
1.0 0.5 4.0 2.283 j2.149
1.0 0.5 4.0 2.284 ;2 .148
1,0 0.5 4,0 2,285 j2.148

1.0 0.5 0.4 3.125 j5.047
1,0 0.5 0,4 3,872 j4.460
1.0 0.5 0.4 4.546 j3.731
1.0 0.5 0.4 4.559 j3.713
1.0 0.5 0.4 4.566 j3.710
1.0 0.5 0.4 4.571 j3.698

1.326
1.327
1.328
1.328
1.328
1.328

0.746
0.779
0.807
0.807
0.807
0.807

1.240
0.59.5
0.029
0.017
0.011
0.006

18.210
8.520
0.275
0.151
0.093
0.040

sions given above is used, the field distribution in the first approxima-

tion becomes the field of a TEM mode in a coaxial resonator, Fig. 3.

The E, and the Ho components are at least twenty times larger than

the other field components. In this case Slra = 1.156 and SM. =jl .41.

For HO= 4 kA/cm, the difference between the propagation constant

(or the resonance frequency) calculated from the exact determinant

and that calculated from the Suhl and Walker approximation of the

quasi-TEM mode is small (see Table I). This difference becomes

smaller if the difference between the inner and the outer radii gets

smaller. This is still true for smaller magnetic bias field (see Table 1,

Ho= 400 A/cm). It means that the conditions given by Weiner [1],

[3] are by no means the most general ones.

Weiner [3] has mentioned, that for a small difference between the

inner and outer radii the determinantal equation is identical zero.

This is absolutely wrong. In its correct form this sentence should be:

If the difference between the inner and the outer radii of the ferrite-

filled coaxial line is small

/s,l(Y@-Y,) <<l

/s, !(l’a-?%)<<l

which means

the determinantal equation vanishes to a first approximation. It

mea ns, the value of the determinantal equation is small, but by no

means zero. It further means that a second-order approximation has

to be done to find that propagation constant, for which the deter-

minantal equation changes its sign, thereby well defining the zero of

the determinant. Weiner seems not to have done this. If it is done,

it can be shown that the determinantal equation only vanishes

exactly, if

P = 6Jd60w0ff.

Therefore, the conditions given by Weiner are by no means correct

and the con&ions given by Brodwin and Miller [2] are sufficient

conditions. Mueller and Rosenbaum repeat the conditions given by

Weiner [9]. Lewin [10] states that there can exist a large difference

between the exact solution and the quasi-TEM solution, but he only

gives an example with ra/ri = 1.5, which does not satisfy the above-

given conditions and, therefore, is in no contradiction to the conclu-

sions made here.

Summarizing, the conditions given by Weiner are not correct, and

the conditions given by Brodwin and Miller are sufficient conditions

for approximating the limit-TEM mode by the Suhl and Walker ap-

proximation.
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